博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu 1028 Ignatius and the Princess III (母函数)
阅读量:6350 次
发布时间:2019-06-22

本文共 2160 字,大约阅读时间需要 7 分钟。

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16394    Accepted Submission(s): 11552


Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.
"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input
 
4 10 20
 

Sample Output
 
5 42 627
 

Author
Ignatius.L
 

Recommend
We have carefully selected several similar problems for you:            
 
题目大意:

就是将一个数 n 拆分成无序可以重复的数,可以几种方法。。

解题思路:

母函数。。。

(1+x+x^2+x^3+.....+x^n)*(1+x^2+x^4+....)*(1+x^3+x^6+...)*...

直接上代码:(可以当作模板)

#include 
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;#define MM(a) memset(a,0,sizeof(a))typedef long long LL;typedef unsigned long long ULL;const int maxn = 1e6+5;const int mod = 1e9+7;const double eps = 1e-8;const int INF = 0x3f3f3f3f;LL gcd(LL a, LL b){ if(b == 0) return a; return gcd(b, a%b);}int c1[maxn];///每一次存的多项式中的数int c2[maxn];///中间变量int n;///拆分的数/**首先对c1初始化,由第一个表达式(1+x+x^2+..x^n)初始化,从0到n的所有x前面的系数都初始化为1.**/void Init(){ for(int i=0; i<=n; i++) { c1[i] = 1; c2[i] = 0; }}int main(){ while(cin>>n) { Init(); for(int i=2; i<=n; i++)///控制一共循环几次,也就是每个多项式乘几次 { for(int j=0; j<=n; j++)///第一个表达式的系数 { for(int k=0; k+j<=n; k+=i)///我们只需要 n 前面的系数 { c2[k+j] += c1[j]; } } for(int j=0; j<=n; j++)///我们在用 c1[]当作第一个乘 { c1[j] = c2[j]; c2[j] = 0;///c2不需要 } } cout<
<

转载地址:http://xrtla.baihongyu.com/

你可能感兴趣的文章
谷歌Pixel 3吸引三星用户, 但未动摇iPhone地位
查看>>
VUE中使用vuex,cookie,全局变量(少代码示例)
查看>>
grep -w 的解析_学习笔记
查看>>
量化交易之启航
查看>>
TX Text Control文字处理教程(3)打印操作
查看>>
CENTOS 7 如何修改IP地址为静态!
查看>>
MyCat分片算法学习(纯转)
查看>>
IO Foundation 3 -文件解析器 FileParser
查看>>
linux学习经验之谈
查看>>
mysqld_multi实现多主一从复制
查看>>
中介模式
查看>>
JS中将变量转为字符串
查看>>
servlet笔记
查看>>
JVM(五)垃圾回收器的前世今生
查看>>
CentOS 7 下安装 Nginx
查看>>
Spring Boot 自动配置之@EnableAutoConfiguration
查看>>
web前端笔记
查看>>
import 路径
查看>>
使用optimizely做A/B测试
查看>>
finally知识讲解
查看>>